GCSE (9-1)

Physics A (Gateway Science)

J249/03: Paper 3 (Higher Tier)

General Certificate of Secondary Education

Mark Scheme for June 2019

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of candidates of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, Cambridge Nationals, Cambridge Technicals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support, which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by examiners. It does not indicate the details of the discussions which took place at an examiners' meeting before marking commenced.

All examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the report on the examination.

Annotations available in RM Assessor

Annotation	Meaning
	Correct response
A	Incorrect response
A	Omission mark
BOD	Benefit of doubt given
CON	Contradiction
RE	Rounding error
SF	Error in number of significant figures
ECF	Error carried forward
L1	Level 1
L2	Level 2
L3	Level 3
NBOD	Benefit of doubt not given
SEEN	Noted but no credit given
I	Ignore

Abbreviations, annotations and conventions used in the detailed Mark Scheme (to include abbreviations and subject-specific conventions).

Annotation	Meaning
	alternative and acceptable answers for the same marking point
DO NOT ALLOW	Separates marking points
IGNORE	Statements which are irrelevant
ALLOW	Answers that can be accepted
()	Words which are not essential to gain credit
ECF	Error carried forward
AW	Alternative wording
ORA	Or reverse argument

Subject-specific Marking Instructions

INTRODUCTION

Your first task as an Examiner is to become thoroughly familiar with the material on which the examination depends. This material includes:

- the specification, especially the assessment objectives
- the question paper
- the mark scheme.

You should ensure that you have copies of these materials.
You should ensure also that you are familiar with the administrative procedures related to the marking process. These are set out in the OCR booklet Instructions for Examiners. If you are examining for the first time, please read carefully Appendix 5 Introduction to Script Marking: Notes for New Examiners.

Please ask for help or guidance whenever you need it. Your first point of contact is your Team Leader.

The breakdown of Assessment Objectives for GCSE (9-1) in Physics A:

	Assessment Objective
AO1	Demonstrate knowledge and understanding of scientific ideas and scientific techniques and procedures.
AO1.1	Demonstrate knowledge and understanding of scientific ideas.
AO1.2	Demonstrate knowledge and understanding of scientific techniques and procedures.
AO2	Apply knowledge and understanding of scientific ideas and scientific enquiry, techniques and procedures.
AO2.1	Apply knowledge and understanding of scientific ideas.
AO2.2	Apply knowledge and understanding of scientific enquiry, techniques and procedures.
AO3	Analyse information and ideas to interpret and evaluate, make judgements and draw conclusions and develop and improve experimental procedures. AO3.1 Analyse information and ideas to interpret and evaluate. AO3.1a AO3.1b Analyse information and ideas to interpret.
AO3.2	Analyse information and ideas to make judgements and draw conclusions.
AO3.2a	Analyse information and ideas to make judgements.
AO3.2b	Analyse information and ideas to draw conclusions.
AO3.3	Analyse information and ideas to develop and improve experimental procedures.
AO3.3a	Analyse information and ideas to develop experimental procedures.
	Analyse information and ideas to improve experimental procedures.

For answers to Section A if an answer box is blank ALLOW correct indication of answer e.g. circled or underlined.

	Answer	Marks	AO element	Guidance
1	D \checkmark	1	2.1	
2	B \checkmark	1	1.1	
3	D \checkmark	1	2.1	
4	B \checkmark	1	1.1	
5	D \checkmark	1	1.1	
6	A \checkmark	1	2.1	
7	B \checkmark	1	1.2	
8	C	1	2.1	
9	C \checkmark	1	1.1	
10	A \checkmark	1	1.1	
11	B \checkmark	1	1.1	
12	B \checkmark	1	2.1	
13	D \checkmark	1	1.1	
14	C \checkmark	1	2.1	
15	A \checkmark	1	2.1	

Question		Answer	Marks	AO element	Guidance
16 (a)	(i)	$40(\mathrm{~g})^{\checkmark}$	1	3.2b	
	(ii)	Mass before $=$ mass after $/$ Mass is conserved AW \checkmark Explanation in terms of particle rearrangement / conservation of numbers of particles \checkmark	2	1.1×2	ALLOW no mass is lost ALLOW matter for mass ALLOW atoms/molecules for particles
(b)		Any one from: Original properties return if change is reversed for physical changes \checkmark Chemical change can't be reversed (easily) OR physical change easily reversible \checkmark The substance after the change is the same as the substance before the change for physical changes ORA	1	1.1	ALLOW in a chemical change particles join together in a different way
(c)	(i)	Any three from: Measure start/initial temperatures Turn on the heaters / heat water Measurements to determine energy or mass of water For a set time \checkmark Measure the final/end temperatures	3	2.2×3	IGNORE put thermometer or heater in beaker Initial can be implied ALLOW for a fixed temperature change ALLOW for a fixed temperature change, measure time
	(ii)	Any one from: Beakers are different sizes OR different volumes /mass of liquid in A and B Beakers are not insulated / no lids \checkmark	1	3.3a	ALLOW Heater is not fully in the water

Question		Answer	Marks	AO element	Guidance
(iii)	Any two from: Use beakers of the same size / same volume \checkmark Use same mass or volume of liquid \checkmark Stir water / keep distance from thermometer to heater fixed \checkmark Insulate the beakers or put the beakers on an insulating material \checkmark Put a lid on the beakers \checkmark Make sure the heater is fully inserted into the liquid \checkmark	$\mathbf{2}$	3.3b		

Question		Answer	Marks	$\begin{array}{\|c} \hline \text { AO } \\ \text { element } \end{array}$	Guidance
17	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=0.28$ (A) award 4 marks $\begin{aligned} & \text { Rearrange equation current = power } \div \text { potential difference/ } \\ & I=P \div V \checkmark \\ & I=65 \div 230 \checkmark \\ & I=0.2826086 \checkmark \\ & I=0.28 \text { (A) } \checkmark \end{aligned}$	4	1.2 2.1 2.1 1.2	NOTE If answer not to 2 sig figs max 3 marks ALLOW one mark for any calculated answer to 2 sf
	(b)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=117000$ (or 116000) (J) award 4 marks $E=P \times t \checkmark$ Unit conversion 30 minutes $=1800$ seconds $E=65 \times 1800$ $E=117000(\mathrm{~J})$	4	1.2 1.2 2.1 2.1	ALLOW ECF from (a) $E=Q \times V \text { or } \operatorname{Ixt} x V$ $E=0.28 \times 1800 \times 230$ ALLOW ECF for incorrect time conversion ALLOW three marks for 1950 (J) $E=116000(\mathrm{~J})$

Question		Answer	Marks	AO element	Guidance
18	(a)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{2 5}(\mathbf{N} / \mathrm{m})$ award 3 marks Recall and rearrange: spring constant $=$ force exerted by a spring \div extension $=5 \div 0.2 \checkmark$ $=25(\mathrm{~N} / \mathrm{m})$	3	1.2 2.1 2.1	ALLOW any other correct pair of points from the graph - points to be read to $\pm 1 / 2$ a small square Final answer between 24 and $26(\mathrm{~N} / \mathrm{m})$ scores three marks
	(b)	Line curves and gradient decreases Point at the end of the linear section of the line labelled 'elastic limit' \checkmark	2	2x1.2	IGNORE poorly drawn curves/thick lines DO NOT ALLOW curve with negative gradient at any point
	(c)	A downwards arrow labelled weight/load An upwards arrow labelled tension Two equal length arrows (by eye), one vertically up and one vertically down	3	3x2.2	DO NOT ALLOW labels pointing to apparatus ALLOW gravity/gravitational force DO NOT ALLOW mass ALLOW force from spring NOTE this mark may not be scored if more than two arrows are drawn

Question			Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
19	(a)	(i)	LED / cells connected the wrong way around OR \checkmark Voltmeter is across the battery/cells OR voltmeter should be across the LED \checkmark	2	2x3.2a	ALLOW diode IGNORE voltmeter in wrong place
		(ii)	Any one from: Control/change/alter the current (in the circuit) Control/change/alter the potential difference/voltage (across the LED)	1	1.2	DO NOT ALLOW to vary the resistance
	(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=100(\Omega)$ award 3 marks Resistance $=$ potential difference \div current $/ R=V \div 1 \checkmark$ $\begin{aligned} & R=3.0 \div 0.03 \\ & R=100(\Omega) \downarrow \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	
		(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=4.5$ (C) award 4 marks Charge flow $=$ current \times time $/ Q=I \times t \checkmark$ $\mathrm{t}=2.5$ minutes $=150$ seconds $\mathrm{Q}=0.03 \times 150$ $\mathrm{Q}=4.5(\mathrm{C}) \checkmark$	4	$\begin{aligned} & 1.2 \\ & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW 3 marks for an answer of 0.075 (C) (time not converted to seconds) $\checkmark \checkmark \checkmark$
		(iii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $\mathbf{1 3 . 5 (\mathrm { J }) \text { award } 2 \text { marks }}$ $\begin{aligned} & E=4.5 \times 3.0 \checkmark \\ & E=13.5(\mathrm{~J}) \checkmark \end{aligned}$	2	$\begin{aligned} & 2.1 \\ & 2.1 \\ & \hline \end{aligned}$	ECF from19(b)(ii) ALLOW 14(J)

	uesti	Answer	Marks	AO element	Guidance
20	(a)*	Please refer to the marking instructions on page 4 of this mark scheme for guidance on how to mark this question. Level 3 (5-6 marks) Detailed explanation about how a transformer works. AND A quantitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. There is a well-developed line of reasoning which is clear and logically structured. The information presented is relevant and substantiated. Level 2 (3-4 marks) Simple explanation of how a transformer works. AND A quantitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. OR Detailed explanation about how a transformer works. AND A qualitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. There is a line of reasoning presented with some structure. The information presented is relevant and supported by some evidence.	6	$\begin{aligned} & 1.1 \times 3 \\ & 3.1 \mathrm{a} \times 2 \\ & 3.2 \mathrm{ax} 1 \end{aligned}$	A01.1 Demonstrates knowledge and understanding of scientific ideas to give an explanation of how a transformer works For example: - Alternating current / ac / voltage / potential difference - (induces) (alternating) pd / current in secondary - Linking different numbers of coils to changing potential differences (or currents) - More secondary coils = bigger output potential difference - Alternating current in primary coil induces alternating magnetic field in the iron core - Alternating magnetic field in the iron core induces alternating potential difference in the secondary coil - An alternating current flows if the output is connected to a circuit - Ratio of potential differences depends on ratio of coils - Step up transformers increase potential difference and have more secondary coils ORA AO3.1a Analyse information and ideas to interpret - quantitative - Correct equation selected from data sheet - Data from table processed - For A and C expect secondary pd of 24 V - For B and D expect secondary pd of 6 V

Question	Answer	Marks	$\begin{array}{\|c} \text { AO } \\ \text { element } \end{array}$	Guidance
	Level 1 (1-2 marks) Simple explanation of how a transformer works. OR A quantitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. OR A qualitative link between coil and potential difference ratios to inform judgement that the data supports the expected output voltages. There is an attempt at a logical structure with a line of reasoning. The information is in the most part relevant. 0 marks No response or no response worthy of credit.			AO3.1a Analyse information and ideas to interpret - qualitative For example: - Double the number of secondary coils (compared to primary) and the output potential difference is doubled (compared to input) - Halve the number of secondary coils (compared to primary) and the output potential difference is halved (compared to input) - In transformer A the number of coils increases by 100% and the voltage increases by almost 100\%/AW - In transformer B the number of coils decreases by 50% and the voltage decreases by $50 \% / \mathrm{AW}$ - In transformer C the number of coils increases by 100% and the voltage increases by almost 100\%/AW - In transformer D the number of coils decreases by 50% and the voltage decreases by $50 \% /$ AW AO3.2a Analyses information and ideas to make judgements - Data supports the expected output voltages - Energy losses in A and C - B and D are efficient ALLOW voltage for potential difference and vice versa

Question			Answer	Marks		Guidance
21	(a)	(i)	Both points correctly plotted Smooth curve correctly drawn	2	1.2	ALLOW within $1 / 2$ small square for plotting DO NOT ALLOW straight lines between data points IGNORE any line drawn for $<10^{\circ}$
		(ii)	Increase in angle of ramp increases speed (at bottom ramp) ORA \checkmark Increase is not linear/doubling angle does not double final speed / AW Reference to quantitative data for two calculations, for example, increase from 10° to 20° the speed increases by 0.76 whilst 20° to 30° the speed increases by $0.54 \checkmark$	3	$\begin{aligned} & \hline 3.1 \mathrm{a} \\ & 3.1 \mathrm{a} \\ & 3.1 \mathrm{~b} \end{aligned}$	IGNORE correlation ALLOW Not directly proportional / Not constant increase NOTE comparison of two increases required NOTE Speed increase from 0° to 10° is 1.81 and speed increase from 30° to 40° is 0.40
		(iii)	(Increase in angle) increases potential energy of the trolley/more work is done raising trolley to that point on the ramp \checkmark This increases the / more kinetic energy at the bottom of the ramp \checkmark	2	1.1x2	ALLOW more PE is transferred to KE
		(iv)	Attempt 1 at 30° (is only recorded to 1 decimal place)/ 3.1 Student should record data to a consistent number of decimal places or 2 dp / the reading should by recorded as $3.10 /$ AW \checkmark	2	$\begin{aligned} & 3.3 \mathrm{a} \\ & 3.3 \mathrm{~b} \end{aligned}$	ALLOW only recorded to 2 significant figures ALLOW should be recorded to 3 significant figures NOT same accuracy

Question		Answer	Marks	AO element	Guidance
	(v)	Any two from: Reproducible means that the results can be reproduced by someone else Only one student has collected this data The experiment is repeatable (as the repeated readings are close together)	2	2.2x2	NOT experiment can be repeated
(b)	(i)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = $6.16\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ award 5 marks $\mathrm{v}^{2}-\mathrm{u}^{2}=2 \text { as (no mark }- \text { on formula sheet) }$ $u=0 v$ $a=v^{2} \div 2 s$ $a=3.51^{2} \div(2 \times 1.0)$ $a=6.16005\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ $\mathrm{a}=6.16\left(\mathrm{~m} / \mathrm{s}^{2}\right)$ (2 decimal places)	5	$\begin{aligned} & 2.1 \\ & 1.2 \\ & 2.1 \\ & 2.1 \\ & 1.2 \end{aligned}$	NOTE must be rearranged ALLOW Any number which rounds to 6.16 ALLOW one mark for any calculated answer to 2dp
	(ii)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer = 9 (J) award 3 marks $\begin{aligned} & \text { kinetic energy }(\mathrm{J})=0.5 \times \text { mass }(\mathrm{kg}) \times(\text { speed }(\mathrm{m} / \mathrm{s}))^{2} / \\ & \mathrm{KE}=1 / 2 \mathrm{mv}^{2} / \mathrm{KE}=0.5 \mathrm{mv}^{2} \checkmark \\ & \mathrm{KE}=0.5 \times 2.0 \times 3.0^{2} \checkmark \\ & \mathrm{KE}=9(\mathrm{~J}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.2 \\ & 2.1 \\ & 2.1 \end{aligned}$	

Question		Answer	Marks	$\begin{gathered} \text { AO } \\ \text { element } \end{gathered}$	Guidance
22	(a)	Pressure is inversely proportional to volume OR $p V=$ constant for a particular gas OR for any of the gases calculation of $p \times V$ For gas B: $10 \times 0.4=4$ and for gas C: $20 \times 0.2=4$ OR Pressure of C is double the pressure of B and volume of C is half the volume of $B \checkmark$ B and $C \checkmark$	3	3.2b 3.1a 3.2b	NOTE could be written next to table
	(b)	For an increase in temperature / heating of gas: gas particles / molecules / atoms have a higher (average) speed / more (kinetic) energy ORA \checkmark They collide more frequently / often with the walls (of container) / container AW \checkmark Bigger force (over same area) equals greater pressure	3	3x1.1	Direction of temperature change must be clear ALLOW move faster for higher (average) speed ALLOW linked to increase/decrease of KE if temperature change not explicit ALLOW bigger change in momentum
	(c)	FIRST CHECK THE ANSWER ON ANSWER LINE If answer $=5500(\mathrm{~Pa})$ award 3 marks pressure due to a column of liquid $(\mathrm{Pa})=$ height of column $(\mathrm{m}) \times$ density of liquid $\left(\mathrm{kg} / \mathrm{m}^{3}\right) \times \mathrm{g}(\mathrm{N} / \mathrm{kg}) / \mathrm{P}=\mathrm{hpg}$ (no mark - on formula sheet) $\begin{aligned} & \mathrm{g}=10(\mathrm{~N} / \mathrm{kg}) \checkmark \\ & \mathrm{P}=0.5 \times 1100 \times 10 \checkmark \\ & \mathrm{P}=5500(\mathrm{~Pa}) \checkmark \end{aligned}$	3	$\begin{aligned} & 1.1 \\ & 2.1 \\ & 2.1 \end{aligned}$	ALLOW three marks for 5390 Pa if $\mathrm{g}=9.8 \mathrm{~N} / \mathrm{kg}$ or 5395.5 Pa if $\mathrm{g}=9.81 \mathrm{~N} / \mathrm{kg}$ is used ALLOW 9.8(1) N/kg

OCR (Oxford Cambridge and RSA Examinations)
 The Triangle Building
 Shaftesbury Road
 Cambridge
 CB2 8EA
 OCR Customer Contact Centre

Education and Learning

Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk
www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

